

Experimental Proposals for FY10

Wayne Solomon, PPPL

NSTX Research Forum FY2011
Transport and Turbulence Topical Science Group
March 16, 2011

College W&M
Colorado Sch Mines

Columbia U Comp-X

General Atomics

INFI

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNI

Think Tank. Inc.

.....

UC Davis

UC Irvine

UCLA UCSD

U Colorado

U Maryland

U Rochester

U Washington

U Wisconsin

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst RRC Kurchatov Inst. **TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U Quebec**

Culham Sci Ctr

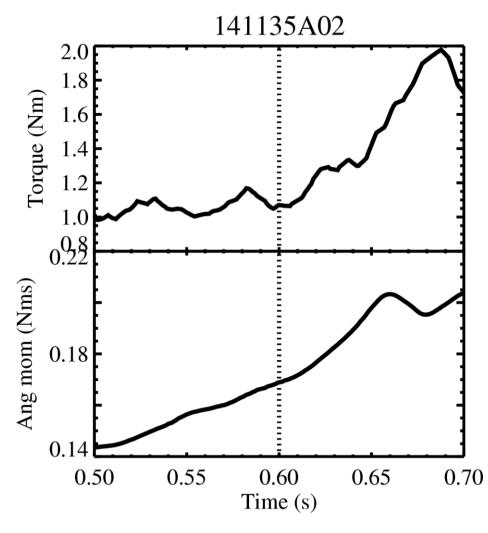
Characterization of intrinsic torque and rho* scaling

Goals

- Measure the effective torque associated for driving intrinsic rotation.
- Contribute to ITPA JEX TC-18 aiming to document scaling of intrinsic torque with rho* for extrapolation to ITER
- Investigate modification to intrinsic torque by HHFW

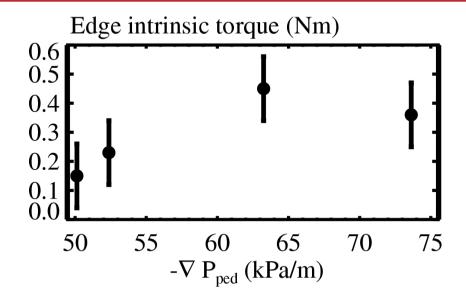
Plan

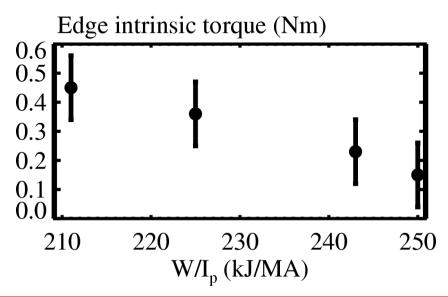
- Use beam waveform to apply torque steps at approximately constant power (2 sources): B on steady and at reduced voltage, and switch between sources A and C.
- Obtain as wide a variation of edge pedestal gradient as possible to compare with empirical intrinsic torque model
- Complete Ip and Bt scans
- Directly observe effect of the HHFW on intrinsic drive by comparing the inferred torque with and without HHFW.


Requirements

 The XP requires MHD quiescent plasmas, that are also resilient to changes to the plasma rotation and the NBI torque.

Requirement: Plasma Must Be MHD Quiescent (or constant) for ~300 ms to Make This Measurement


- Analysis assumes plasma is
 - steady before the NBI torque perturbation
 - responds to the step according to momentum confinement
 - settles to a new steady state
- Changes in MHD over this long-ish time window can completely violate assumption
 - Here, angular momentum is doing its own thing, independent of external torque!



XP1042 Obtained First Measurements of Intrinsic Torque in NSTX

- Data set assembled from various attempted but incomplete scans!
- Edge intrinsic torque appears to show some correlation with the pressure gradient, similar to DIII-D
 - Interestingly, seems to show anti-correlation with W/lp intrinsic velocity scaling...?
- Total intrinsic torque seems very large 1-2 Nm
 - Comparable to all 3 sources!

